Conservation laws driven by Lévy white noise

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Partial Differential Equations Driven by Lévy Space - Time White Noise

In this paper we develop a white noise framework for the study of stochastic partial differential equations driven by a d-parameter (pure jump) Lévy white noise. As an example we use this theory to solve the stochastic Poisson equation with respect to Lévy white noise for any dimension d. The solution is a stochastic distribution process given explicitly. We also show that if d ≤ 3, then this s...

متن کامل

ec 2 00 8 REGULARITY OF ORNSTEIN - UHLENBECK PROCESSES DRIVEN BY A LÉVY WHITE NOISE

The paper is concerned with spatial and time regularity of solutions to linear stochastic evolution equation perturbed by Lévy white noise ”obtained by subordination of a Gaussian white noise”. Sufficient conditions for spatial continuity are derived. It is also shown that solutions do not have in general cádlág modifications. General results are applied to equations with fractional Laplacian. ...

متن کامل

Stochastic Scalar Conservation Laws Driven by Rough Paths

We prove the existence and uniqueness of solutions to a class of stochastic scalar conservation laws with joint space-time transport noise and affine-linear noise driven by a geometric p-rough path. In particular, stability of the solutions with respect to the driving rough path is obtained, leading to a robust approach to stochastic scalar conservation laws. As immediate corollaries we obtain ...

متن کامل

Singular FBSDEs and Scalar Conservation Laws Driven by Diffusion Processes

Motivated by earlier work on the use of fully-coupled Forward-Backward Stochastic Differential Equations (henceforth FBSDEs) in the analysis of mathematical models for the CO2 emissions markets, the present study is concerned with the analysis of these equations when the generator of the forward equation has a conservative degenerate structure and the terminal condition of the backward equation...

متن کامل

Barrier crossing driven by Lévy noise: universality and the role of noise intensity.

We study the barrier crossing of a particle driven by white symmetric Lévy noise of index alpha and intensity D for three different generic types of potentials: (a) a bistable potential, (b) a metastable potential, and (c) a truncated harmonic potential. For the low noise intensity regime we recover the previously proposed algebraic dependence on D of the characteristic escape time, T_{esc} app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Hyperbolic Differential Equations

سال: 2015

ISSN: 0219-8916,1793-6993

DOI: 10.1142/s0219891615500174